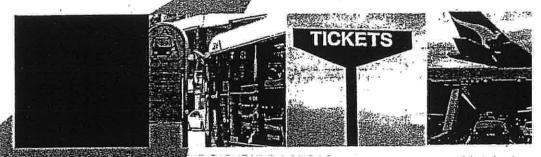
APPENDIX 2


M5 EAST EXPANSION TRAFFIC MODELING REPORT HALCROW MWT

(. . (* on y

M5 East Expansion
Traffic Modelling Report

Draft

Roads and Traffic Authority, NSW

Halcrow MWT

Roads and Traffic Authority, NSW

M5 East Expansion
Traffic Modelling Report

Contents Amendment Record

This report has been issued and amended as follows:

Rev	Description	/Date Pig	pared by	Checked	Approved
0	Draft for internal review	05/05/00	Z		

Halcrow MWT

Suite 20, 809 Pacific Highway, Charswood, NSW-2067 Australia: Tel.+61 2 9410 4100 (Fax.+61/2 9410 4199 www.halcrow.com/australasia

Halorow.MWT has prepared this report in accordance with the instructions of Roads and Traffic Authority, NSW for their sole and specific use. Any other persons who use any information contained herein do so at their own risk.

. © Halcrow Pacific Pty/Ltd 2009

Contents

1	Intro	oduction	1
2	Bac	kground	2
	2.1	M5 and M5 East	2
	2.2	Main Tunnel Capacity	2
	2.3	Airport Tunnel and General Holmes Drive Capacity	4
	2.4	Trend in Daily Traffic Volumes	5
	2.5	M5 and M5 East Surface Capacity Augmentation	5
3	Inpu	its to the Modelling Process	7
	3.1	The Sydney Travel Model	17
4	Mod	lel Calibration and Validation	8
	4.1	Highway Model Calibration	8
	4.2	Highway Model Validation	9
5	Lan	d Use and Forecasting Assumptions	11
	5.1	Introduction	11
	5.2	Population and Employment	11
	5.3	Sydney Airport	13
	5.4	Port Botany	14
	5.5	Green Square and South Sydney Growth Centre	15
	5.6	Cooks Cove	16
	5.7	Summary of M5 East Corridor Demand	16
	5.8	Other Road Projects	17
6	Opt	ion Definition and Development	18
	6.1	Option Definition	18
	6.2	M5 East Expansion	19
	6.3	North-South Link	. 19
7	Trai	ffic Modelling Results	20
	7.1	Tolling Implications	30
	7.2	Network Operation Statistics	31

	7.3	Network Operation		.*		31
8	Sum	mary and Conclusions	2		*	33

Introduction

The Roads and Traffic Authority, NSW commissioned Halcrow MWT to undertake traffic modelling of various options for the expansion of the M5 East Motorway in southern Sydney.

Scenario development and analysis resulted in the development of a preferred option. This is a 4 lanes eastbound, 3 lanes westbound arrangement.

This option was then further developed and analysed. The results of this analysis are presented in this report.

Section 2 of this report provides background information on the M5 East.

Information on the inputs to the modelling process are outlined in Section 3.

The calibration and validation of the base model is outlined in Section 4.

Land use and forecasting assumptions are discussed in Section 5.

Option definition and development is described in Section 6 and the results of the modelling are outlined in Section 7.

Section 8 provides results and conclusions.

2 Background

2.1

M5 and M5 East

The M5 East connects the M5 Motorway and King Georges Road at Beverly Hills with General Homes Drive at Kyeemagh. It is 10km in length and combines surface road and tunnel. The main M5 East Tunnel comprises twin 4km 2 lane tunnels between Bexley Road, Earlwood and Marsh Street, Arncliffe. A further 550m tunnel passes under the Cooks River and on General Holmes Drive another cut and cover tunnel passes under the Sydney Airport runway. The main tunnel has a clearance of 4.6m with the other a clearance of 4.4m. The speed limit in the M5 East main tunnel is 80km/hr and at surface 90km/hr. The tunnel has a steep grade of about 8% at the western end which is an issue for heavy vehicles. There is one ventilation stack to exhaust air from the main tunnel located in a near by industrial area in Turrella. A ventilation tunnel forms a third tube which lies below the two traffic tunnels.

The M5 East was opened to traffic in December 2001 and operates toll free. The M5 East forms part of the Sydney Orbital and plays an important role in connecting Sydney's south west with Sydney Airport, Port Botany and the Sydney CBD. Further, it forms part of the National Auslink Network linking Sydney and Melbourne. Since its opening, daily traffic on the M5 East has significantly exceeded forecasts. Weekday traffic is routinely above 100,000 vehicles per day compared to 69,000 vehicles per day forecast for 2011 in the Supplementary M5 East EIS (1996). Approximately 8% of this traffic comprises heavy vehicles.

The Sydney Metropolitan Strategy (p. 172 and p. 192) identifies the need to plan, assess and evaluate proposals to improve road connections between Port Botany and Western Sydney. Increasing the capacity of the M5/M5 East Motorway and/or an easterly extension of the M4 Motorway are identified as potential options. Similarly, the NSW Government's recent review (p. 14) of the Freight Industry Advisory Board's Report recommends that planning for additional truck capacity in the M5 and M4 corridors should proceed.

The NSW Premier subsequently announced in May 2008 that the NSW Government would contribute \$20 million, adding to the Federal Government's commitment of \$25 million, to investigating the viability of the two projects, one of these being the M5 East Duplication. This work is due to commence in 2008/9.

2.2 Main Tunnel Capacity

The capacity of the M5 East's eastbound and westbound carriageways is affected by the proportion of heavy trucks using each and their ability to negotiate the relatively steep grades in them. In this regard the westbound tunnel has steeper grades (8%)and is more likely to have heavy laden trucks (carrying full import containers from the port) than the

east bound tunnel (which is used by a significant number of trucks returning empty containers to the port).

Figures 2.1 and 2.2 provide a plots of total vehicles and passenger car equivalents (PCU's) centred using each tunnel over a 24 hour period. The counts are from 2004 but the capacities as reflected by peak usage have not changed. These show that the capacity of each tunnel is up to 4,400 PCU's. However in terms of actual vehicles the capacity of the eastbound tunnel is about 4,000 vehicles per hour whereas that of the westbound is only about 3,300 vehicles per hour.

The difference is attributable to the steeper up grade and higher proportion of laden trucks in the westbound direction resulting in a heavy truck to passenger car unit equivalence of 6. For the eastbound tunnel the equivalence is only 3.

The implications of this imbalance for the M5 East are that in any improvement scheme it is more important to give relief to westbound traffic than to eastbound traffic although both directions would obviously benefit from having more capacity.

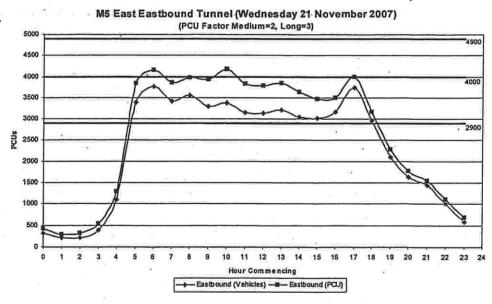


Figure 2.1 - M5 Flows - Eastbound

Figure 2.2 - M5 Flows - Westbound

Airport Tunnel and General Holmes Drive Capacity

General Holmes Drive provides an important link between the M5 East and The Grand Parade to the south and Foreshore Road, Southern Cross Drive and General Holmes Drive to the north.

As well as catering for the confluence of these roads, it also accommodates weaving inovements between different arrival and departure points.

Eight traffic lanes are provided in this section of General Holmes Drive which includes the tunnel under the airport north-south runway. During morning peak hours tidal flow operates with five lanes eastbound (northbound) towards the city and Foreshore Road and three lanes westbound (southbound) away from these. The city bound peak flow peaks at around 8,000 vehicles per hour while the outbound (southbound) peaks at about 4,000 vehicles per hour at this time.

At other times it operates with four lanes in each direction and this generally copes with the evening outbound peak which is around 7,000 vehicles per hour. The apparent imbalance between the morning and evening is explained by the duration of the peaks. Morning peak operates over an effective two hour period while the evening has a more sustained period of three hours.

Over an average weekday traffic flows in each direction are about equal. The total weekday flow through the airport tunnel in 2006 was around 150,000 vehicles.

The tidal arrangement works satisfactorily at the moment but peak period queuing especially in the morning peak indicates that the system is at or close to capacity at these times.

2.3

Thus any increase in M5 East capacity that directed traffic towards the General Holmes Drive/Airport tunnel section would need to be accompanied by additional or parallel capacity for this section as well.

2.4

Trend in Daily Traffic Volumes

Table 2.3 provides records of changes in daily use since the M5 East was opened.

Table 2.3 - M5 East AADT Daily Traffic Volumes (365 Day Average)

	 	~ * * * * * *	1 02 mm CO (0 0 C	
Year	Eastbound	10.	Westbound	Total
5/20/01/2	39,175		35,870	7/5,04/5
(2008)	45,0725		40,880	85 905
2004	48/8/50		42055	90,805
20005	49.086		4440000	9(a (a) a
1/2(0)0)3/	48,8410		451970 1	9/27/800
210(07/	49 640		∆ls 2300	95 S(5)0

These records show that traffic volumes on the M5 East quickly grew from opening at the end of 2001 to be over 85,000 vehicles per day within two years. By the end of 2004, the tunnel had reached its nominal capacity of over 90,000 per day (constrained by peak period capacity as discussed in Section 2.2). Since then, the daily volumes have grown fairly much in line with the regional growth rate of about 1.4% per annum.

The volumes in Table 2.3 also indicate the effect of heavy vehicles as discussed in Section 2.2. The westbound flows which are affected by laden heavy vehicles, have consistently been about 10% below the eastbound flows, although this discrepancy reduced in 2007.

It should be noted the Table 2.3 AADT flows are seven day a week averages. As indicated above, the average weekday flows are consistently above 100,000 vehicles two way. In terms of PCU, this represents 130,000 per day. The daily flow profiles provided in Appendix A show that M5 East effectively flows at or near capacity for nearly 12 hours per weekday. Few roads in the Sydney region exhibit this characteristic.

2.5

M5 and M5 East Surface Capacity Augmentation

The operator of the M5 Motorway has submitted a proposal to the RTA to increase the number of traffic lanes west of King Georges Road from two lanes to three lanes in each direction (except eastbound between Belmore Road and King Georges Road)¹. There is width available in the corridor to allow this.

The RTA is still to make a decision on this. However for the purposes of this investigation it has been assumed that this would take place (including the eastbound section between Belmore Road and King Georges Road) before 2016.

¹ If any upgrade were to occur to M5 East, it is assumed that this section would also be upgrade to 3 lanes as provision has already been made for this in the current pavement width.

Widening of the surface section of the M5 East between the western tunnel portal and King Georges Road would require land acquisition and significant changes to the Kingsgrove Road interchange as it is not possible to fit three traffic lanes each way in this section. Notwithstanding, this assessment assumes the widening would be undertaken as part of any capacity augmentation of M5 East.

3 Inputs to the Modelling Process

The Halcrow MWT Strategic Road Model of the Sydney Metropolitan Area is based on two main sources:

- Network based on network model development by Halcrow MWT over several years, and
- Demands based on outputs from the Transport Data Centre's Strategic Travel Model (STM)

This section describes the inputs from the STM.

3.1 The Sydney Travel Model

The Sydney Travel Model is a four step multi modal model run by the Transport Data Centre. The model is used to test:

- Major infrastructure changes
- Different population/employment growth and distribution scenarios

The STM is under constant development and for the M5 East, the model used STM outputs from September 2007. The primary assumptions in the STM at this time were:

- TPDC Nov 2006 population projections (see Appendix A)
- TPDC Nov 2006 employment forecasts (see Appendix A)
- RTA Oct 2006 Road networks
- Rail itineraries supplied by RailCorp
- TPDC Sep 2004 bus networks
- Macros v1.2 (development version).

At the time of the M5 East model development, the STM was based on the 2001 Census and Journey to Work information. The TDC has recently released updated models based on the 2006 census. These models and their results are currently being evaluated for use in updating the forecasts for the M5 East Expansion. Updated land use forecasts from the Australian Bureau of Statistics have also been recently released. These increase the forecast 2026 population by around 400,000 persons. This increased population will also have an impact on the forecasts for the M5 East Expansion.

The Transport Data Centre have released a summary document explaining the inputs and methodology behind the STM. This is included in Appendix A.

Updated modelling using this new information should be available in February 2009.

4 Model Calibration and Validation

The output trip tables from the STM were input to the Halcrow MWT Strategic Road Model. The section describes the calibration and validation of the Halcrow MWT Strategic Highway Model.

Highway Model Calibration

4.1

The Halcrow MWT Sydney Metropolitan Highway Model updates the output vehicle trip matrices from the STM, and through a process of matrix refinement the model is calibrated against traffic counts. Model Calibration screenlines are shown in Figure 4.1.



Figure 4.1 - Sydney Network Calibration Screenlines

The UK Highways Agency defines traffic model calibration and validation criteria in the Design Manual for Roads and Bridges. The Halcrow MWT Highway Model has been calibrated to this criteria as there is no local equivalent. The Highway Agency criteria and the calibration of the Halcrow MWT model is shown in Tables 4.1 and 4.2.

Table 4.1 - Model Calibration (AM Peak)

two constants (2211 1 cars)	Criteria	Halcrow MWT Model Result
Assigned hourly flower compared with observed flows		
###Individual iteWs.within #15% for flows 700-27400 ph.	PARTIES AND DESCRIPTION OF THE PARTIES AND THE	
	285/60/96899	879
3) Individual flows within 400volutor flows >27/00volutor		
4. To all screening flows is be within 5%	All (or nearly all)	22 of 24 screenlines
	State of United	
G-GBR-Stalistic		65%
na nymdividual rijows - GEE < 5	>85% of cases:	(510)¥0)
r in seicentine iotals GEH≪L	Altro Tearly all)	2 or 2 septimes
	scieenlines	

Table 4.2 - Model Calibration (PM Peak)

Table 4.2 House Gameration (2.11.2.5)	Criteria	Halcrow MWT Model Result
Assigned nouncy flows compared with observed illow		
a individual flows within 19% to flows 700427,000d vz ladlydual flows within 1000gl for flows 7700vph 2 individual flows within 2100val for flows 22700vph	>HV-iii ieses	1,02%
4. Total screening librate be within 5%	All to nearlyall) scieetilliss	25 o 22 separalitos
GGELSETRIC DandWillerNows:GELSE	sinvolasis	90%
g)) seteenil teroralsu GEN 24	All (pencarilyall) Sisterilhes	22 of 24 spreadings

Highway Model Validation

The Halcrow MWT Model has been validated against travel times. The UK Highways Agency sets travel time validation criteria as shown Tables 4.3 and 4.4.

Table 4.3 - Model Validation (AM Peak)

				Criteria	 Halcrow MWT
					Model Result
anavelanne	William	(on moue)	iangheir)	ः अधिः क्षानिवासः	86%

Table 4.4 - Model Validation (PM Peak)

	Criteria	Halcrow MWT
		Model Result
s Irraxel spines whom 159-recommute fronchem	ः≽85% ©i novies:	52%

While not meeting the criteria in the PM peak, the model generally validates well against travel times.

The final comparison to determine the validity of the model is a visual comparison of the trip length distribution against the distribution from the STM. This comparison is made is Figures 4.2 and 4.3.

In these figures the "Original" bars represent the trip length distribution from the STM, while the "Adjusted" line shows the final trip length distribution for the calibrated and validated highway model.

12

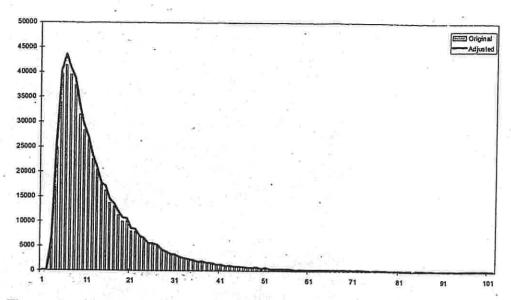


Figure 4.2 - Trip Length Distribution Comparison - AM Peak

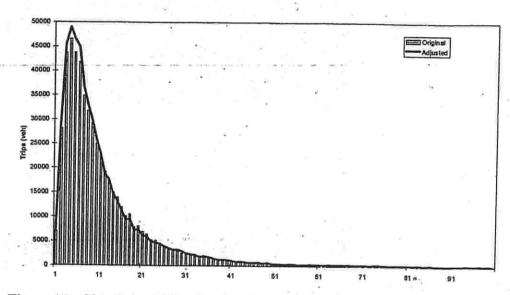


Figure 4.3 - Trip Length Distribution Comparison - PM Peak

The graphs show a good correlation between the STM and Halcrow MWT trip length distributions.

5 Land Use and Forecasting Assumptions

5.1

Introduction

Traffic demands in the M5 East corridor will be influenced by continuing population and employment growth in the parts of Sydney on either side of it. They will also be influenced by growth in activity at Sydney Airport and Port Botany.

This growth is discussed below.

5.2

Population and Employment

The Metropolitan Strategy has anticipated that the population of Sydney will grow by about one million to over five million persons by 2031. The number of jobs is expected to increase by 500,000 to 2.5 million over the same time.

The relative locations of the new jobs and homes will have a significant effect on travel demand along different transport corridors in the metropolitan area.

The M5 East corridor caters for travel generally between south western Sydney and eastern Sydney. It also caters for a significant amount of travel between south western Sydney and the north eastern Sydney.

Figure 5.1 indicates forecast growth in employment and population in these three areas.

rear	Lobr	Population	Щ.	mployment	ent
2006	145	780,		586,45	
2011	585	582,926		602,77	LO.
2016	612	612,565		621,829	
2021	626,	043		636,466	
2026	639,	492	Σα <i>5</i>	643,760	
2031	652	652,900	1	648.181	

Source TDC 2007 Land Use Forecasts

Figure 5.1 - Population and Employment Growth

Doc: 083605r02a.doc Draft,

Forecast changes over the 25 years from 2006 to 2031 are as follows.

Table 5.1 - Employment and Population Growth in M5 East Catchment

Table 5.1 1							0's)
distribution of		2006	2031	00's) Change	2006	2031	Change
≘South West Syc	nav i	TO AN ADVANCED IN			CHEST STREET,		
Sydnay East		-586	16/18	62	35/91	. 650	1/12
Sydney/North		/22/31	258	30	334	360	29
Total			1270	166	1.725	2.051	426

Table 5.1 indicates that between 2006 and 2031 the number of residents linked by the corridor would increase by about 426,000 representing growth of about 25 precent. Similarly the number of jobs linked by the corridor would grow by 166,000 represents growth of about 15 percent.

As mentioned previously, the information outlined above, and the models used for the traffic analysis of the M5 East Expansion are based on results of the 2001 census. The TDC has recently released updated models based on the 2006 census. These models and their results are currently being evaluated for use in updating the forecasts for the M5 East Expansion. Updated land use forecasts from the Australian Bureau of Statistics have also been recently released the increase the forecast 2026 population by around 400,000 persons. Updated traffic models using these figures should be available in February 2009.

The implication of this further growth is likely to be that justification for the upgrading of the M5 East Motorway would most likely be greater than that indicated by the forecasts produced in this analysis.

Sydney Airport

The model has been updated to include traffic generation based on the Sydney Airport Masterplan 2008. The masterplan assumes an increase in passengers from around 30 million in 2006 to 78.9 million in 2029. During this time mode share to public transport is anticipated to grow by 5%.

Significant commercial and retail developments are also proposed on Sydney Airport Land that adds to total traffic generation.

For this analysis, the combined impacts of passenger growth and other developments has been used to determine traffic generation for Sydney Airport. Tables 5.2 and 5.3 summarise the traffic generation used for Sydney Airport.

Doc: 083605r02a.doc

5.3

Table 5.2 - Sydney Airport Traffic Generation (Average AM Peak Hour)

Year	Total Arrivals	Departures		
20(0)6	4,500	3500	100 100 100	000
2016	7 500	5 (000)	3	
J026	9.700	7/5/00		0.00

Table 5.3 - Sydney Airport Traffic Generation (Average PM Peak Hour)

_Year	Total Arrivals		Total Two-Way
2006	AND THE RESERVE OF THE PERSON	\$ 5000	and any or any factories of a second state of
2046	4.800	16 (600)	ú 400i
2026 - 1	7/000	9-400	- 16400

The growth in the Average AM Peak Hour between 2006 and 2026 is anticipated to be in the order of 9,000 vehicles, while in the Average PM Peak Hour the growth is around 10,000 vehicles.

Port Botany

The Port Botany expansion EIS forecasts that container throughput expressed as twenty foot equivalent units (TEU's) will increase as follows.

Table 5.4 - Forecast Port Botany Container Growth

Year	Trade Volume (TEU)
2010.0	1.25 million
-201A	1575 million
2015	25 million
2021	22 million

Source: Port Botany Expansion Environmental Impact Statement, Sydney Ports Corporation 2004

Thus over the 15 year forecast period the number of containers handled at the port is expected to increase by about 2 million TEU's or by about 155%.

The port's landside transport strategy seeks to increase the proportion of containers being handled by rail from about 20% to about 40%.

The EIS forecasts that if, as a worst case, only 20% of containers were transported by rail then daily road container transport trips would increase as follows.

Table 5.5 - Forecast Port Botany Truck Movement Growth

Laure	J.J	I OICCHOL I OIL	,	
-Year		Daily (veh/day)	AM Peak (veh/hr)	PM Peak (veh/hr)
2002		2.910		
		to only		
2000				
201110		21W00	Zelei	
2016	n.	5:100	36 1 6	100
on only		697	7/0	234
202	是中国			

If rail was to carry 40% of containers then truck trips generated in 2021 would reduce to about 4,700 per day. The peak hourly truck volumes would also decrease by 25%. Even under this high rail scenario, truck volumes are expected to nearly double over the next 15 years.

Green Square and South Sydney Growth Centre

The Green Square redevelopment area includes part of the suburbs of Rosebery, Zetland and Alexandria. It is centred on the Green Square railway station midway between the Sydney CBD and the Airport.

A new town centre with major new residential and commercial buildings is proposed adjacent to the railway station.

The area generally falls with Transport Data Centre Zones 75 and 78 to 81. Table 5.6 below provide TDC land use forecasts for the zones along with the forecast morning peak traffic generation

Table 5.6 - Green Square Land Use and Traffic Generation

Year	Residential Population (persons)	Employment (jobs)	AM Peak I	four (veh/hr)	Traffic Generation (two-way)		
			Arrival	Departure			
20001	7,646	Track 25,374					
2006	12,988	26,028	5118/5	-2476	7760		
20111	16.089	28(050)	5601	2843	6415		
2010	- 418/07/1	-29(626	F 5882	- 30800	8924		
20E	20 580	36 OPO	6212	3091	9202		
2020	222,165	52,330	::067(0)	3965	10.036		

Table 5.6 indicates that between 2006 and 2026 there will be significant residential and employment development in the area and this will increase the traffic generation of the area by around 1,600 vehicles per hour in the morning peak.

5.5

5.6

Cooks Cove

The Cooks Cove Development has been added into the traffic model with connections to Marsh Street. It has been assumed that the development is completed by 2016 generating 1950 vehicles in the Average AM Peak Hour and 1500 vehicles in the Average PM Peak Hour (based on the current Cooks Cove Masterplan).

5.7

Summary of M5 East Corridor Demand

As an indication of the total market for vehicle travel along the M5 East corridor, peak hour trip table travel demands between the local government areas in the south west and those in the east and north were extracted from the TDC travel model. These are shown on Figure 5.2. The figure shows total traffic and truck volumes for each five year forecast period between 2006 and 2026. In the interest of brevity only morning peak hour volumes are shown. The pattern for evening peak hour and daily travel would be similar.

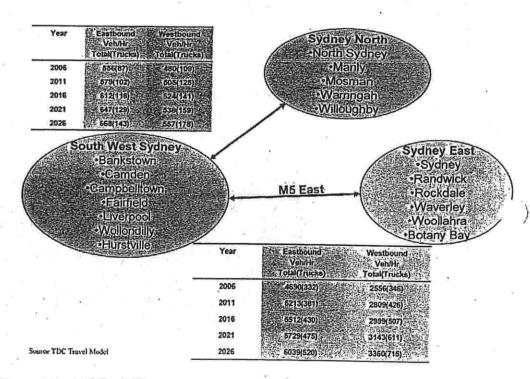


Figure 5.2 - AM Peak Hour Corridor Vehicle Trips

Table 5.7 summarises the potential growth in traffic along the corridor. This reflects all potential demand in the corridor. Obviously not all would travel on the M5 East as for a variety of reasons some would use parallel routes.

Table 5.7 - Growth in Total AM Peak Hour Demand on the M5 East

Comaor				
Year	Westbound	Eastbound	Two-Way	% Growth on
		A 200 March 1997		2006
Para na	ALC: ALC: A	4 Walengar	8 282 (874)	
	and the same of	= 1-700-(/100)	C 406/42084	40%
		6 124 (54)6		ic feb
2016	31525 (64)01		5.00	10.00
2021	: 2(68)L 7740)	6,376 (604)	(2.10405/a(4)5740)	
2026	3.917 (896) (413)	6 707 (663)		28.3%

Note: Figures in brackets are trucks. Figures out of brackets are for all vehicles including trucks.

Table 5.7 indicates that traffic demand in the corridor is forecast to grow by around 28 percent over the 20 year period for which forecasts have been produced. Truck numbers are forecast to grow by nearly 80 percent.

These figures are based on population and employment growth and do not include the passenger traffic growth generated by Sydney Airport.

Other Road Projects

The RTA "List of Road Projects for Modelling Purposes" from September 2008 was used for this analysis. The M4 Extension and F6 have been removed from this project list for the purpose of this analysis.

5.8

6 Option Definition and Development

6.1

Option Definition

With the new westbound three lane tube being the preferred initial option, further development was undertaken to determine the optimum connections, linkages and tolling for the motorway. In liaison with RTA, five options were determined to require further investigation:

- Option F M5 East Expansion (4in 3out) + North-South Link (all tolled)
- Option G M5 East Expansion (4in 3out) + North-South Link (all untolled)
- Option H M5 East Expansion (4in 3out) (tolled) + North-South Link (untolled)
- Option I M5 East Expansion (4in 3out) (tolled)
- Option J M5 East Expansion (4in 3out) (untolled)

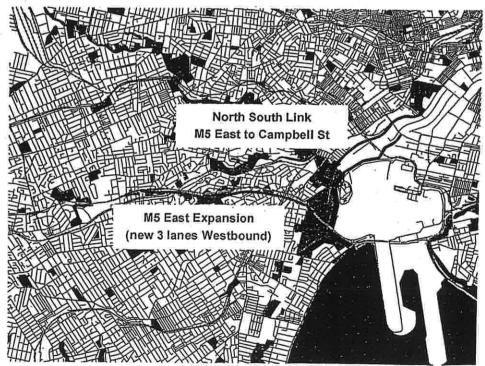


Figure 6.1 - M5 East - Option Definition

6.2

M5 East Expansion

The M5 East Expansion involves the construction of a new three lane westbound tunnel between Marsh Street and Bexley Road.

The new tunnel provides two westbound capacity improvements:

- Additional lane westbound, and
- Improved capacity by reducing grade at western portal.

Eastbound the tunnel will provide:

- Two lanes from Bexley Road to Princes Highway, Marsh Street and if constructed, the North-South Link, and
- Two lanes from Bexley Road to Cooks River Tunnel (and onto General Holmes Drive).

6.3

North-South Link

The North-South Link provides a direct connection from the M5 East to the intersection of Campbell Street and Euston Road. This link also provides for a connection to Marsh Street.

The North-South Link provides an alternate route from the M5 East to the South Sydney Growth Centre and also provides potential for integration with Sydney Airport if Airport Drive is to be relocated.

The alignment of the North-South Link also provides for integration with potential future road projects such as the M4 Extension and the F6.

An advantage of the North-South Link would be the provision of additional northsouth arterial road capacity to supplement that provided by General Holmes Drive beneath the airport runway.

7 Traffic Modelling Results

Traffic modelling has been undertaken using Halcow MWT's EMME model of the Sydney road network.

The vehicle matrices were developed from 2006 trip tables issues by the Transport Data Centre (TDC) and accord with the Department of Planning land use forecasts. The TDC vehicle matrices are derived from the Sydney Travel Model (STM) which is a four step multi-model run by TDC.

Being a four step model, the STM accounts for changes in mode over time and examines induced demand effects of projects for all modes.

For the purpose of this analysis the "business as usual" STM runs have been used, and no induced demand analysis of the M5 East Expansion has been undertaken. This analysis is normally undertaken during the Environmental Assessment process, and will be undertaken in due course.

Each of the options as described in Section 4 was coded into the models for the purposes of forecasting the changes in traffic volumes on the regional road network. Link traffic volumes modelled for the average morning and evening peak hour for 2006, 2016 and 2026 were considered in the assessment.

Figure 7.1 shows the locations where link volumes are reported. Total volumes captured across the following two screenlines were also examined:

Screenline 1:

Forest Road, east of Bexley Road
Canterbury Road, east of Bexley Road
Georges River Road, east of Brighton Avenue
M5E tunnel, east of Bexley
M5E new tunnel, east of Bexley (for options only)

 Screenline 2: General Holmes Drive, east of M5E Airport Drive, east of International Terminal North South Link (for options only)
Princes Highway, north of West Botany Street

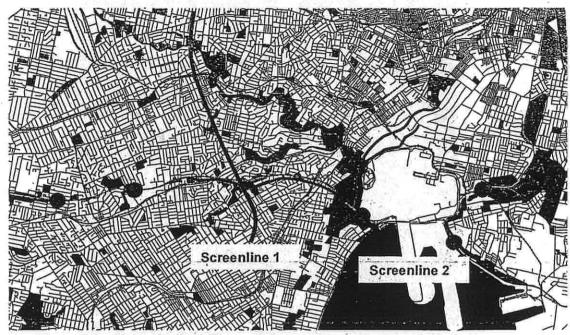


Figure 7.1 - Sites with Link Volumes Reported

Tables 7.1 and 7.2 show the traffic flows for the AM and PM peak periods.

Table 7.1 – Modelled Traffic Flows – 2016

	Option J		1470	3530	2190	1650		9270	3910	4130		5000	0699	3990	48/0 2130
	Option I		1650	3200	2240	1680		9020	3860	4070		4840	5530	3680	4850 2070
9	Option H		1650	2670 4010	2090	1610		8550	3120	2540 7 3480		4890	5620	3400	0961
2016	Option F Option G Option H		1480	3450 4400	2020	1590		8760	3920 9660	3490		- 1.5070	6810	0///0	0002
	Option F		1650	2/50 8850	21.10	07201		0.698	3440	3640		7.4890	5620	0250 7760	1970
	Base		0//814	7540	2270	14/20		-0000	25/7(0)	10586		08,23	7680	02290	2050
2006	, Base		4600	4-190	2040	1,524,0		0/1/0	78(90)	3560		3520	4090	AEAID.	1760
-						(Q)				粤				n il	
			east of Beyley	IIII) eastof Bexley Roth	2000	edst of Difference		east of M5E	eastonmenanonan emin			West of King Georges Rd	east of King Georges Re	east of Botany Ro	south of General Homes IDr
AM		Screenline 1	Forest Rd	MSE-to Princes, Marsh and NS Ein	Canterbury Rd		Screenline 2	General Homles Br	NS LINK	Princes Hwy	Other Links	M5E	M5E	Southern Cross Dr.	Foreshore (Rd:

2 Two two-lane tunnels are provided in the eastbound direction under the options. Under the base case a single eastbound tunnel is provided.

Doc: 083605r02a.doc Draft,

Traffic Modelling Results

Option I Option J	740 4540 1350 760 760 2140 1640 1640 1640 1640	
Option I	990 990 1420 770 770 2080 1620 1620 3170	00/0
16 Option H	990 3320 760 760 760 760 1270 1260 3390 3390	0000
2016 Option G Option H	770 14490 1300 750 750 1630 1480 1220 1220 4700	1030
Option F	1010 1010 11400 1770 17830 11830 11490 11490 11490	
Base	1130 2390 1440 780 1610 1610 1860 3360	0.60
2006 Base	2190 2190 720 720 3450 1170 1170 2370 2370 3000	0/25
	east of Bexley Rd east of Bexley Rd east of Brighton Ave east of Inferior I	all Homes Dr
AM Westsonndron Southbound	Screenine 1 Forest Ro Wise Canterbury Rd Seorges River Rd Seorges River Rd Seorges River Rd Striportible NS Link Princes I Hwy Wise Wise Wise Wise Wise Wise Southern Cross Pr	Foreshore Rd

³ Two two-lane tunnels are provided in the eastbound direction under the options. Under the base case a single eastbound tunnel is provided.

Traffic Modelling Results

Table 7.2 - Modelled Traffic Flows - 2026

Option J	1700 3720 4120 2400 1770	9780 9780 4410 4430	5490 7030 4170 5390 2240
Option I	1830 3250 3610 2440 1800	9600 4380 4380	5370 6010 3840 5350
2026 Option G Option H (1830 3150 4260 2250 1730	9070 3680 2790 3710	5400 6130 3620 5140 2120
2026 Option G O	1720 3680 4670 2210	9220 3690 2900 3720	5530 7450 3950 5150
Option F	1830 3180 4140 2280 1740	. 92/10 387/0 204/0 389/0	5390 6120 3710 5200 2140
Base	2050 4790 2510 1360	9640 3840 4290	3980 4480 3440 5300 2190
2006 Base	(1600) 41190 20410 (52/0)	3170 2950 3550	3320 4090 3400 4540
		arminal EB. NB.	Rd. E8 Rd. E8 . E8 . E8
-	east of Bexley/Rd east of Bexley/Rd east of Bexley/Rd east of Bexley/Rd east of Brighton Ave	east of M5E. east of International II north of Warsh St. north of West Botany	west of King Georges east of King Georges east of Warsh, St east of Botany Rd south to Keeneral Hom
		east of M5E, east of Interne nouth of Marsh nouth of West	Wilhos o ISEA o ISEA o ISEA
SHEER STATES	iver Tunnelf Marsh and NS		
AM Fasin om der North Benneth	Screenline 1 Forest Rd: M5E Fto Cooks River Tunnel: M5E Fto Princes: Marsh and NS Link Canterbury Rd: Georges River Rd: F	Screenline 2. General Homles Di Aliport Dr NS Isink Princes HW	Other Links MSE MSE Southern Cross Dr Foreshore Rd

* Two two-lane tunnels are provided in the eastbound direction under the options. Under the base case a single eastbound tunnel is provided.

Doc: 083605r02a.doc Draft,

n I Option J	1040 7700 1340 1 2180 1820 12670 1510 11390	4640 2330 2310 2130	2900 2890 2440 3130 3310 1240 1260
inon H Option I	1020 1220 1220 18 2070 1460 111	4360 1820 1520 1710	2930 2910 2290 2290 3050 1260
2026 Option G Option H	690 690 611830 11330 41120	4750 1890 1730	3420 4960 2850 3330
Option F	1040 1290 1290 1890 11490	4530 2000 7720 (980)	2900 2890 2420 13240 1250
Base	950 3590 1460	4920 2240 2160	2900 3620 2670 3400
, 2006 Base	550 3060 [246 990	3550 (1080)	2040 3200 2050 11890
		THE NAME OF THE PARTY OF THE PA	
¥ = 4	eastof Bexley Rd east of Bexley Rd east of Bexley Rd east of Bexley Rd east of Brighton Ave	east of MSE. east of International Ferm north of Marsh St north of West Botany St	west of King Georges Rd least of King Georges Rd east of Malsin St least of Botany Rd south of General Homes I
		eastori MSE eastori interne north of Marsi north of West	west of the second of the seco
	Eastbound or Northbound Screenline 1 Forest, Rd M5E _ to Cooks: River Tunnel? M5E - to Princes: Marshand NS: Unl Canterbury Rd Georges River Rd	2 mies Dr	SCIENT TO THE SECOND TO THE SE
PM	Eastbound.or.Nort Screenline.1 Forest.Rd ************************************	Screentine 2 General Homles Di Auront Di NS lent Princes Hw	Other Links MSE MSE MSE Southern Gross Dr

FIWO two-lane tunnels are provided in the eastbound direction under the options. Under the base case a single eastbound tunnel is provided.

2026 Option G Option H Option I Option	1,040	6730 6060 5850 1910 8 1940	1090	8440	2920	2530		5430 5290 5300 6310 7 7 5530 7 5520	3490	0.110 种类
Option F	1950	. 5940 1970	(0,U)		1, 1, 12, 60) - 1, 1, 25 1, 1, 1540) - 11, 1, 29			5290		
2006 Base Base	1520	3850 4340 ***1740 21/10	0100016	7,880 92/10		25110 5820		3980 4420		
	P)	Passion Bextey Rding Community WE cast on Bextey Rding Community C	i v		morting (Marsh St.	noith of West Botany St	i de la constante de la consta	eastofiking Georges Rd: 4 HrkWB	State of Marsh St. WE	
PM	Westbound or Southbound Screenline 1 Forest Ro	MSE Canterbun/Rd Georges Piver Rd		S Dr.	100 m		Other Links M5E		Southern Gross Dr.	

7.1

Tolling Implications

Tolling of the M5 East and the North-South Link will not only provide a revenue stream for the motorway project, but also reduce the traffic flows on the motorway.

Tolling has been examined using a distance based tolling regime. Tolls where applicable have been applied at 33c/km for cars and 83c/km for heavy vehicles. The toll on the M5 East has been applied between King Georges Road and Marsh Street, and on the entire length of the North South Link.

To obtain daily traffic and the AM and PM peak periods have been expanded using an expansion factor. A factor of 6.25 is an average factor for tolled and untolled roads around the Sydney Metropolitan Area. The current expansion factor for AM and PM to average daily traffic on the M5 East is 7.40. A reduction to 6.25 when the motorway is tolled is considered reasonable at this stage. Further research is required to more accurately determine the tolled expansion factor in this corridor.

The effects of tolling on the M5 East Main Tunnel and the North-South Link are shown in Table 7.3.

Table 7.3 - Daily Traffic Flows

mo	East Main Tur	niei	North South Link				
2006	2016	- 2026	- 2006	- 2016 -	2026 -		
Two-Way	Two-Way	Two Way	Two-Way	Two-Way	Two Way		
98 000	107/500	- HN2,000					
	11(4,000)	16/16/000		23,000	32/500		
	417/7/10(0)01	1,910,000		(644,0)00	71 500		
	497/000	135,400		-581(0000	66 500		
	-1112.000	1257.5500					
	1771 (000)	4,684,000					
The state of the s	2006	2006 2016 Two-Way Two-Way 98 000 107/3500 1914-000 1977-000 4917-000 4912-000	2006 2016 2026 Two-Way Two-Way Two Way 98,000 1077,500 1112,000 1144,000 1357,000 1777,000 130,000 4177,000 133,500 112,000 1277,500	2006 2016 2026 2006 Two-Way Two-Way Two Way Two-Way 98 000 107/3500 102/1000 11/4/000 150/4000 11/7/000 150/4000 11/2/000 12/7/500	2006 2016 -2026 -2006 2016 Two-Way Two-Way Two-Way Two-Way -98 000 -107 500 -112 000 -177 000 -157 000 -23 000 -177 000 -190 000 -64 000 -177 000 -186 500 -58 000 -172 000 -127 500		

Option F - M5 East Expansion (4in - 3out) + North-South Link (all tolled)

Option G - M5 East Expansion (-lin - 3out) + North-South Link (all untolled)

Option H - M5 East Expansion (4in - 3out) (tolled) + North-South Link (untolled)

Option 1 - M5 East Expansion (4in - 3out) (tolled)

Option J - M5 East Expansion (4in - 3out) (untolled)

AM + PM Expansion factor of 7.40 applied for untolled cases and 6.25 applied for tolled cases

The model is showing a daily toll diversion of approximately 35% for the M5 East Main Tunnel. The North South Link has more available alternative routes and has a significantly higher toll diversion of 65%

Network Operation Statistics

To determine the network effects of the M5 East Expansion, Sydney Network Vehicle Hours of Travel (VHT) and Vehicle Kilometres of Travel (VKT) have been extracted from the Sydney Strategic Highway Model. This statistics are shown in the following Table 7.4.

Table 7.4 - Network Statistics - AM Peak

	20	16	2026		
	VHT .	VKT	VHT	VKT	
BrEC	2500484	7/5/2/7/25		1 48658395	
Old	(246002	7524858	318875	# 8658591	
Ones	20/50/50	7 7/5/8/3/2016	348706	8662887	
Coult	72/51657	7/5/24/05/9	616105	8658475	
€jacli	2/16932	7526466	310745	8659986	
Opt U	247 (06	7/53/407/5	320632	8664815	

The network statistics by road class are found in Appendix B.

Overall, the M5 East Expansion and the North South Link improve the operation of the road network by reducing travel times by around 2% which is significant over the entire Sydney road network.

7.3 Network Operation

The operation of the road network has not been examined in detail however, from the strategic modelling the following conclusions can be drawn:

- The M5 East in its current form will suffer increased congestion over more extended periods into the future (with peak demands exceeding 4,500 vehicles per hour). The capacity of the tunnel in its existing configuration is approximately 4,000 vehicles per hour eastbound and 3,300 vehicles per hour westbound.
- The M5 East expansion improves capacity in the corridor and draws traffic from surrounding roads (peak demand is approximately 8,200 vehicles per hour untolled, with a theoretical capacity of around 8,000 vehicles per hour)
- Under untolled scenarios, the eastbound tunnel to Princes Highway, Marsh Street and the North South Link is over capacity in the 2026 AM peak period (4,650 vehicles per hour), the eastbound tunnel to Cooks River is approaching capacity (3,700 vehicles per hour).
- The westbound tunnel is over capacity in the untolled scenario in the PM peak period for both 2016 (6,350 vehicles per hour) and 2026 (6,750 vehicles

per hour). With toll, the westbound flows are still near capacity by 2026 (6,050 vehicles per hour) where the assumed westbound capacity is 6,000 vehicles per hour.

- The North-South Link assists in diverting traffic from Airport Drive and General Holmes Drive by providing an alternate access to South Sydney.
 This link also provides network redundancy around the airport precinct.
- In the absence of North-South Link, traffic flows on Airport Drive and General Holmes Drive (3,850 and 9,550 vehicles per hour respectively) would exceed their relevant capacities. These links would require some upgrade if the North-South Link was not constructed.

Summary and Conclusions

The M5 East Motorway is currently operating at capacity for many hours throughout the day resulting in significant traffic congestion. This congestion effects private vehicle travel, passenger trips to Sydney Airport and freight transport from Port Botany, Sydney Airport and the South Sydney Growth Centre.

Analysis of the M5 East corridor identified that a new three lane tunnel westbound (allowing for two two-lane tunnels eastbound) would provide additional capacity for both eastbound and westbound traffic.

The additional three lane westbound tunnel would provide more than a proportional increase in capacity by reducing the exit grade at the westbound portal.

The expanded would motorway attract traffic from alternate routes and is forecast to reach capacity by 2026. Tolling the expanded M5 East would provide a revenue stream for the project and generally reduce 2026 flows to within the expanded capacity that the scheme would provide.

The North South Link provides network benefits by diverting traffic from Airport Drive and General Holmes Drive, providing an alternate access to South Sydney. This link also provides network redundancy around the airport precinct. In the absence of the North-South Link General Holmes Drive and Airport Drive are forecast to have demand greater than their capacity leading to significant congestion.